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General Relativity, the Massless Scalar Field,
and the Cosmological Constant
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For gravity coupled to a neutral, massless scalar field, Wyman suggested a method
of solution in power series valid provided the scalar field depends only on time.
In this work we generalize his approach to nonzero cosmological constant.

1. INTRODUCTION

General relativity couples gravity with all fields. In particular, general
covariance determines the relevance of the metric of space-time in the
equations of the fields, and these, in view of their energy-momentum content,
constitute the external sources of gravity.

Bergmann and Leipnik (1957) sought solutions for the coupling of
gravity with a neutral, massless scalar field. They assumed a static line
element with spherical symmetry. Several authors have since dealt with
various aspects of the problem; see Frgyland (1982) for some important
references.

Under the assumptions of Bergmann and Leipnik, Wyman (1981)
suggested a new coordinate system which allows the integration of the field
equations in an almost trivial manner, provided the scalar field is time
independent. He further suggested a method for searching for a solution
in a power series, provided the scalar field is only time dependent. However,
all these results are based on a vanishing cosmological constant A.

The purpose of this work is to study the coupling of a scalar neutral
massless field with gravity allowing a nonnull value for A in Einstein’s
equations. In particular, we shall consider a class of solutions corresponding
to a scalar field that only depends on time.
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The plan of this work is as follows: In Section 2 we formulate the field
equations for the coupled system. In Section 3 we search for Schwarzschild-
type solutions for the coupled equations. For this purpose we find a natural
extension of the power series method for A # 0. A brief summary of the
results is presented in Section 4.

2. THE FIELD EQUATIONS
The most general case of Einstein’s equations is
R _%gp.VR +Agp.v = —KT/.LV (1)

where R,,, denotes the Ricci tensor; R denotes the curvature scalar, construc-
ted from the metric tensor g,, and its derivatives. A must be a constant,
called the cosmological constant. x denotes the gravitational coupling
constant, and T, denotes the energy-momentum tensor associated with
external gravitation sources.

Let ¢ (the neutral massless scalar field) be the only external source of
the gravitational field. The associated T,, minimally coupled to gravity is
defined as

v

KT‘LLV =Q(¢,}L¢,V _%gu.vgaﬁqs,a(p,ﬂ) (2)

Here a comma denotes the partial derivative and ) is a positive constant.
The equation of motion for ¢ (minimally coupled) is given by

¢a=0 (3)
where semicolon denotes a covariant derivative.
The field equations (1) allow R to be expressed in terms of A and T3,

the trace of T,,,, which may be calculated from (2). Substituting these results
in (1), we reduce Einstein’s equations to the equivalent form

R;uz = _Q¢,#¢,V + Agp.V (4)

Finally, we observe that all physically acceptable solutions to (3)
correspond to an energy density Ty, positive in a local Lorentzian frame,
defined by

Loo= 8= "8n=—"gn=1
(5)
8 =0, u#Fv

3. SOLUTION OF THE EQUATIONS

In the static case with spherical symmetry, the Schwarzschild-type line
element is given by

ds*=e"dt*— e dr —r* dX* (6)
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where
d3?=de*+sin® 0de’ (7)

both » and A being only functions of r. Similarly, following Wyman (1981),
we shall suppose that the field ¢ depends at most on ¢ and r. Let ¢ and
¢' denote the partial derivatives of ¢ with respect to ¢ and r, respectively.
Then ¢ ,, takes the form

b,.=(¢, ¢',0,0) (8)

Due to the spherical symmetry assumed in (6), the field equations (4)
imply that ¢ and ¢’ are independent of the ¢ variable. Clearly, ¢ = ¢ (1, r)
may depend explicitely on &

Under our symmetry assumptions, the only nonnuil components of
R,, are (Adler, et al., 1975, p. 464)

v ov'A v? v')
+—+

R:_V—A_____
00 =€ (2 4 4 7

9)

R33 - R22 Sinz 7

Then, given the structure of R,,,, and considering the definitions of ¢, and
g.. given in (8) and (6), respectively, we obtain the field equations

" !/\I 12 ? .,
—e”_)‘(%~y—4—+£4—+fr—) =-Q¢’+A e (10)
V" 1/’)\, V/Z A’
—2*——4‘+—4——7=—Q¢'2—-A et (11)
/ ’7 )\"
e‘*(1+”7’—7'> 1= AP (12)
b¢'=0 (13)
On the other hand, (3) takes the form
d 3 (v—A)/2 4t d 5 (A=w)/2 ;
5;(’ e ¢>)—5(V e ¢)=0 (14)

Equation (13) imples that ¢’ # 0 or ¢ #0. These cases must be dealt
with separately. In this work we shall only consider the simplest case, ¢ # 0,
which allows an immediate integration of (14).
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If ¢ #0, we see from equation (13) that ¢'=0. Therefore, in view of
equation (14), we have

@ = const (15)

In what follows, ¢ shall denote a constant of integration.
Equations (10)-(12) imply

V+A =Qé%ret (16)
v —A=2[(1-Ar) e* —1]/r (17)

In the particular case A =0, Wyman (1981) suggested a method of solution
in power series for equations (16} and (17). We now proceed to show the
extension of his method for the general case A # 0. The basic fact is that
in the absence of explicit solutions for g, in this system of coordinates,
the system (16), (17) allows the calculation of the Taylor expansions for
the solutions at any point of space. In particular, we shall develop the
procedure at the point r=0. We shall simplify the calculations by defining
the new variable

x =120 (18)

This change of variable reduces (16) and (17) to
v+ =et (19)
v'—=A=[(1—ex)e* —1]/x (20)

where the prime denotes differentiation with respect to x; the ¢ parameter
has been defined as

e =2A/0¢> (21)

Let v(x) and A(x) be regular at x =0. Then A(0) =0. In particular, we
shall impose »(0)=0. Under these conditions, equations (19) and (20)
become

v (0)+A'(0)=1 (22)
»(0) = A"(0) = @3%—2 A(0)—¢ (23)
Solving (22) and (23) for »'(0) and A'(0), we obtain
v(0)=(2-¢)/3 (24)
A0)=(1+¢)/3 (25)
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Differentiating equations (19) and (20) with respect to x, we find, in the
limit x - 0, the equations for »"(0) and A"(0). Using (24) and (25), we obtain

2e —1
p(0)+4"(0) == (26)
1+ 1+¢)
V(0) - ()=~ 20 Fe) (A Fe) (27)
3 18
Therefore, »"(0) and A"(0) are given by
—8+14s —5¢7
"(0) = —————— 28
v(0) = (28)
—7+16e+5¢”
A"(0) = ————— 29
(0) 25 (29)

Now we are able to express the first terms of the Taylor expansions for
v(x), A(x), e”, and e* at x =0. The results are

2—¢  8-1l4e+5¢

= — +...
v(x) 3 x 50 x (30)
2—¢ . 8—14e +5¢7 .
= 68¢2Qr2————§—26——8¢402r4+--~ (31)
1+e¢ 7—16¢ —5¢7
Alx) = — LR )
(x) ;X 50 x (32)
1+e¢ . 7—16e —5¢> . :
== ¢29r2———£0—~q5402r4+--~ (33)
2—¢ 2—¢
V=14 + 4 4
e 3 x T x (34)
2—¢ ., 2—¢ .
=1+ 8q,’>2(lr2+-——608 PR ot TR (35)
1+ 2—26e ~10¢”
et =1+ 38x— ;O L X (36)
1+¢ . 1-13e—5¢ .
=1+_—6£ d)zﬂrz——“‘i‘:;:—os—s' d>492r4+- e (37)

A new aspect of our results is that the Taylor coefficients calculated
for the expansions (30), (32), (34), and (36) are polynomial functions of
the £ parameter, with all its roots real and nonull.
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In particular, equations (2) and (15) imply that the T,, component of
the energy-momentum tensor is constant and given by

KTOO:Q(ISZ/2 (38)
Then, ¢, defined by (21), may be expressed as
£ = A/KTOO (39)

Then & and the Taylor coefficients in the expansions (30), (32), (34), and

(36) remain unaltered when A and T, are rescaled by the same factor.
Finally, we remark that our expressions for », A, e”, and e* include, as

special cases, the expressions obtained by Wyman (1981) for ¢ =0 (A =0).

4. FINAL COMMENTS

We have extended the method of solution as power series to the most
general case of Einstein’s equations, including the cosmological term, when
a scalar, neutral, massless field is the only external source of gravity. The
results we have obtained include, as a particular case, those reported
previously for A=0.
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